pyspry
Type stubs for the pyspry
library.
1# noqa: D200,D212,D400,D415 2""" 3.. include:: ../../README.md 4""" # noqa: RST499 5# stdlib 6import logging 7 8# local 9from pyspry.base import Settings 10from pyspry.nested_dict import NestedDict 11 12__all__ = ["__version__", "NestedDict", "Settings"] 13 14__version__ = "1.0.2" 15 16_logger = logging.getLogger(__name__) 17_logger.debug( 18 "the following classes are exposed for this package's public API: %s", 19 ",".join([Settings.__name__, NestedDict.__name__]), 20)
19class NestedDict(MutableMapping): # type: ignore[type-arg] 20 """Traverse nested data structures. 21 22 # Usage 23 24 >>> d = NestedDict( 25 ... { 26 ... "PARAM_A": "a", 27 ... "PARAM_B": 0, 28 ... "SUB": {"A": 1, "B": ["1", "2", "3"]}, 29 ... "list": [{"A": 0, "B": 1}, {"a": 0, "b": 1}], 30 ... "deeply": {"nested": {"dict": {"ionary": {"zero": 0}}}}, 31 ... "strings": ["should", "also", "work"] 32 ... } 33 ... ) 34 35 Simple keys work just like standard dictionaries: 36 37 >>> d["PARAM_A"], d["PARAM_B"] 38 ('a', 0) 39 40 Nested containers are converted to `NestedDict` objects: 41 42 >>> d["SUB"] 43 NestedDict({'A': 1, 'B': NestedDict({'0': '1', '1': '2', '2': '3'})}) 44 45 >>> d["SUB_B"] 46 NestedDict({'0': '1', '1': '2', '2': '3'}) 47 48 Nested containers can be accessed by appending the nested key name to the parent key name: 49 50 >>> d["SUB_A"] == d["SUB"]["A"] 51 True 52 53 >>> d["SUB_A"] 54 1 55 56 >>> d["deeply_nested_dict_ionary_zero"] 57 0 58 59 List indices can be accessed too: 60 61 >>> d["SUB_B_0"], d["SUB_B_1"] 62 ('1', '2') 63 64 Similarly, the `in` operator also traverses nesting: 65 66 >>> "SUB_B_0" in d 67 True 68 """ 69 70 __data: dict[str, typing.Any] 71 __is_list: bool 72 sep = "_" 73 74 def __init__( 75 self, *args: typing.Mapping[str, typing.Any] | list[typing.Any], **kwargs: typing.Any 76 ) -> None: 77 """Similar to the `dict` signature, accept a single optional positional argument.""" 78 if len(args) > 1: 79 raise TypeError(f"expected at most 1 argument, got {len(args)}") 80 self.__is_list = False 81 structured_data: dict[str, typing.Any] = {} 82 83 if args: 84 data = args[0] 85 if isinstance(data, dict): 86 structured_data = self._ensure_structure(data) 87 elif isinstance(data, list): 88 self.__is_list = True 89 structured_data = self._ensure_structure(dict(enumerate(data))) 90 elif isinstance(data, self.__class__): 91 self.__is_list = data.is_list 92 structured_data = dict(data) 93 else: 94 raise TypeError(f"expected dict or list, got {type(data)}") 95 96 restructured = self._ensure_structure(kwargs) 97 structured_data.update(restructured) 98 99 self.__data = structured_data 100 self.squash() 101 102 def __contains__(self, key: typing.Any) -> bool: 103 """Check if `self.__data` provides the specified key. 104 105 Also consider nesting when evaluating the condition, i.e. 106 107 >>> example = NestedDict({"KEY": {"SUB": {"NAME": "test"}}}) 108 >>> "KEY_SUB" in example 109 True 110 >>> "KEY_SUB_NAME" in example 111 True 112 113 >>> "KEY_MISSING" in example 114 False 115 """ 116 if key in self.__data: 117 return True 118 for k, value in self.__data.items(): 119 if key.startswith(f"{k}{self.sep}") and self.maybe_strip(k, key) in value: 120 return True 121 return False 122 123 def __delitem__(self, key: str) -> None: 124 """Delete the object with the specified key from the internal data structure.""" 125 del self.__data[key] 126 127 def __getitem__(self, key: str) -> typing.Any: 128 """Traverse nesting according to the `NestedDict.sep` property.""" 129 try: 130 return self.get_first_match(key) 131 except ValueError: 132 pass 133 134 try: 135 return self.__data[key] 136 except KeyError: 137 pass 138 raise KeyError(key) 139 140 def __ior__(self, other: typing.Mapping[str, typing.Any] | list[typing.Any]) -> NestedDict: 141 """Override settings in this object with settings from the specified object. 142 143 >>> example = NestedDict({"KEY": {"SUB": {"NAME": "test", "OTHER": 99}}}) 144 >>> example |= NestedDict({"KEY_SUB_NAME": "test2"}) 145 >>> example.serialize() 146 {'KEY': {'SUB': {'NAME': 'test2', 'OTHER': 99}}} 147 148 >>> example = NestedDict(["A", "B", "C"]) 149 >>> example |= NestedDict(["D", "E"]) 150 >>> example.serialize() 151 ['D', 'E'] 152 """ 153 converted = NestedDict(other) 154 self.maybe_merge(converted, self) 155 156 if converted.is_list: 157 self._reduce(self, converted) 158 return self 159 160 def __iter__(self) -> typing.Iterator[typing.Any]: 161 """Return an iterator from the internal data structure.""" 162 return iter(self.__data) 163 164 def __len__(self) -> int: 165 """Proxy the `__len__` method of the `__data` attribute.""" 166 return len(self.__data) 167 168 def __or__(self, other: typing.Mapping[str, typing.Any] | list[typing.Any]) -> NestedDict: 169 """Override the bitwise `or` operator to support merging `NestedDict` objects. 170 171 >>> ( NestedDict({"A": {"B": 0}}) | {"A_B": 1} ).serialize() 172 {'A': {'B': 1}} 173 174 >>> NestedDict({"A": 0}) | [0, 1] 175 Traceback (most recent call last): 176 ... 177 TypeError: cannot merge [0, 1] (list: True) with NestedDict({'A': 0}) (list: False) 178 179 >>> NestedDict([0, {"A": 1}]) | [1, {"B": 2}] 180 NestedDict({'0': 1, '1': NestedDict({'A': 1, 'B': 2})}) 181 """ 182 if self.is_list ^ (converted := NestedDict(other)).is_list: 183 raise TypeError( 184 f"cannot merge {other} (list: {converted.is_list}) with {self} (list: " 185 f"{self.is_list})" 186 ) 187 188 if converted.is_list: 189 self.maybe_merge(converted, merged := NestedDict(self)) 190 self._reduce(merged, converted) 191 return merged 192 193 assert isinstance(other, Mapping) 194 195 return NestedDict({**self.__data, **other}) 196 197 def __repr__(self) -> str: 198 """Use a `str` representation similar to `dict`, but wrap it in the class name.""" 199 return f"{self.__class__.__name__}({repr(self.__data)})" 200 201 def __ror__(self, other: MutableMapping[str, typing.Any] | list[typing.Any]) -> NestedDict: 202 """Cast the other object to a `NestedDict` when needed. 203 204 >>> {"A": 0, "B": 1} | NestedDict({"A": 2}) 205 NestedDict({'A': 2, 'B': 1}) 206 207 >>> merged_lists = ["A", "B", "C"] | NestedDict([1, 2]) 208 >>> merged_lists.serialize() 209 [1, 2] 210 """ 211 if not isinstance(other, (dict, list)): 212 raise TypeError( 213 f"unsupported operand type(s) for |: '{type(other)}' and '{self.__class__}'" 214 ) 215 return NestedDict(other) | self 216 217 def __setitem__(self, name: str, value: typing.Any) -> None: 218 """Similar to `__getitem__`, traverse nesting at `NestedDict.sep` in the key.""" 219 for data_key, data_val in list(self.__data.items()): 220 if data_key == name: 221 if not self.maybe_merge(value, data_val): 222 self.__data[name] = value 223 return 224 225 if name.startswith(f"{data_key}{self.sep}"): 226 one_level_down = {self.maybe_strip(data_key, name): value} 227 if not self.maybe_merge(one_level_down, data_val): 228 continue 229 self.__data.pop(name, None) 230 return 231 232 self.__data[name] = value 233 234 @classmethod 235 def _ensure_structure( 236 cls, data: typing.Mapping[typing.Any, typing.Any] 237 ) -> dict[str, typing.Any]: 238 out: dict[str, typing.Any] = {} 239 for key, maybe_nested in list(data.items()): 240 k = str(key) 241 if isinstance(maybe_nested, (dict, list)): 242 out[k] = NestedDict(maybe_nested) 243 else: 244 out[k] = maybe_nested 245 return out 246 247 @staticmethod 248 def _reduce( 249 base: typing.MutableMapping[str, typing.Any], 250 incoming: typing.Mapping[str, typing.Any], 251 ) -> None: 252 """Delete keys from `base` that are not present in `incoming`.""" 253 for key_to_remove in set(base).difference(incoming): 254 del base[key_to_remove] 255 256 def get_first_match(self, nested_name: str) -> typing.Any: 257 """Traverse nested settings to retrieve the value of `nested_name`. 258 259 Args: 260 nested_name (builtins.str): the key to break across the nested data structure 261 262 Returns: 263 `typing.Any`: the value retrieved from this object or a nested object 264 265 Raises: 266 builtins.ValueError: `nested_name` does not correctly identify a key in this object 267 or any of its child objects 268 """ # noqa: DAR401, DAR402 269 matching_keys = sorted( 270 [ 271 (key, self.maybe_strip(key, nested_name)) 272 for key in self.__data 273 if str(nested_name).startswith(key) 274 ], 275 key=lambda match: len(match[0]) if match else 0, 276 ) 277 278 for key, remainder in matching_keys: 279 nested_obj = self.__data[key] 280 if key == remainder: 281 return nested_obj 282 283 try: 284 return nested_obj[remainder] 285 except (KeyError, TypeError): 286 pass 287 288 raise ValueError("no match found") 289 290 @property 291 def is_list(self) -> bool: 292 """Return `True` if the internal data structure is a `list`. 293 294 >>> NestedDict([1, 2, 3]).is_list 295 True 296 297 >>> NestedDict({"A": 0}).is_list 298 False 299 """ 300 return self.__is_list 301 302 def keys(self) -> typing.KeysView[typing.Any]: 303 """Flatten the nested dictionary to collect the full list of keys. 304 305 >>> example = NestedDict({"KEY": {"SUB": {"NAME": "test", "OTHER": 1}}}) 306 >>> list(example.keys()) 307 ['KEY', 'KEY_SUB', 'KEY_SUB_NAME', 'KEY_SUB_OTHER'] 308 """ 309 return NestedKeysView(self, sep=self.sep) 310 311 @classmethod 312 def maybe_merge( 313 cls, 314 incoming: Mapping[str, typing.Any] | typing.Any, 315 target: MutableMapping[str, typing.Any], 316 ) -> bool: 317 """If the given objects are both `typing.Mapping` subclasses, merge them. 318 319 Also check if the `target` object is an instance of this class. If it is, and if it's based 320 on a list, reduce the result to remove list elements that are not present in `incoming`. 321 322 >>> example = NestedDict({"key": [1, 2, 3], "other": "val"}) 323 >>> NestedDict.maybe_merge(NestedDict({"key": [4, 5]}), example) 324 True 325 >>> example.serialize() 326 {'key': [4, 5], 'other': 'val'} 327 328 Args: 329 incoming (typing.Mapping[builtins.str, typing.Any] | typing.Any): test this object to 330 verify it is a `typing.Mapping` 331 target (typing.MutableMapping[builtins.str, typing.Any]): update this 332 `typing.MutableMapping` with the `incoming` mapping 333 334 Returns: 335 builtins.bool: the two `typing.Mapping` objects were merged 336 """ 337 if not hasattr(incoming, "items") or not incoming.items(): 338 return False 339 340 for k, v in incoming.items(): 341 if k not in target: 342 target[k] = v 343 continue 344 345 if not cls.maybe_merge(v, target[k]): 346 target[k] = v 347 elif hasattr(target[k], "is_list") and target[k].is_list: 348 cls._reduce(target[k], v) 349 350 return True 351 352 @classmethod 353 def maybe_strip(cls, prefix: str, from_: str) -> str: 354 """Remove the specified prefix from the given string (if present).""" 355 return from_[len(prefix) + 1 :] if from_.startswith(f"{prefix}{cls.sep}") else from_ 356 357 def serialize(self, strip_prefix: str = "") -> dict[str, typing.Any] | list[typing.Any]: 358 """Convert the `NestedDict` back to a `dict` or `list`.""" 359 return ( 360 [ 361 item.serialize() if isinstance(item, self.__class__) else item 362 for item in self.__data.values() 363 ] 364 if self.__is_list 365 else { 366 self.maybe_strip(strip_prefix, key): ( 367 value.serialize() if isinstance(value, self.__class__) else value 368 ) 369 for key, value in self.__data.items() 370 } 371 ) 372 373 def squash(self) -> None: 374 """Collapse all nested keys in the given dictionary. 375 376 >>> sample = {"A": {"B": {"C": 0}, "B_D": 2}, "A_THING": True, "A_B_C": 1, "N_KEYS": 0} 377 >>> nested = NestedDict(sample) 378 >>> nested.squash() 379 >>> nested.serialize() 380 {'A': {'B': {'C': 1, 'D': 2}, 'THING': True}, 'N_KEYS': 0} 381 """ 382 for key, value in list(self.__data.items()): 383 if isinstance(value, NestedDict): 384 value.squash() 385 self.__data.pop(key) 386 try: 387 self[key] = value 388 except AttributeError: 389 self.__data[key] = value
Traverse nested data structures.
Usage
>>> d = NestedDict(
... {
... "PARAM_A": "a",
... "PARAM_B": 0,
... "SUB": {"A": 1, "B": ["1", "2", "3"]},
... "list": [{"A": 0, "B": 1}, {"a": 0, "b": 1}],
... "deeply": {"nested": {"dict": {"ionary": {"zero": 0}}}},
... "strings": ["should", "also", "work"]
... }
... )
Simple keys work just like standard dictionaries:
>>> d["PARAM_A"], d["PARAM_B"]
('a', 0)
Nested containers are converted to NestedDict
objects:
>>> d["SUB"]
NestedDict({'A': 1, 'B': NestedDict({'0': '1', '1': '2', '2': '3'})})
>>> d["SUB_B"]
NestedDict({'0': '1', '1': '2', '2': '3'})
Nested containers can be accessed by appending the nested key name to the parent key name:
>>> d["SUB_A"] == d["SUB"]["A"]
True
>>> d["SUB_A"]
1
>>> d["deeply_nested_dict_ionary_zero"]
0
List indices can be accessed too:
>>> d["SUB_B_0"], d["SUB_B_1"]
('1', '2')
Similarly, the in
operator also traverses nesting:
>>> "SUB_B_0" in d
True
74 def __init__( 75 self, *args: typing.Mapping[str, typing.Any] | list[typing.Any], **kwargs: typing.Any 76 ) -> None: 77 """Similar to the `dict` signature, accept a single optional positional argument.""" 78 if len(args) > 1: 79 raise TypeError(f"expected at most 1 argument, got {len(args)}") 80 self.__is_list = False 81 structured_data: dict[str, typing.Any] = {} 82 83 if args: 84 data = args[0] 85 if isinstance(data, dict): 86 structured_data = self._ensure_structure(data) 87 elif isinstance(data, list): 88 self.__is_list = True 89 structured_data = self._ensure_structure(dict(enumerate(data))) 90 elif isinstance(data, self.__class__): 91 self.__is_list = data.is_list 92 structured_data = dict(data) 93 else: 94 raise TypeError(f"expected dict or list, got {type(data)}") 95 96 restructured = self._ensure_structure(kwargs) 97 structured_data.update(restructured) 98 99 self.__data = structured_data 100 self.squash()
Similar to the dict
signature, accept a single optional positional argument.
256 def get_first_match(self, nested_name: str) -> typing.Any: 257 """Traverse nested settings to retrieve the value of `nested_name`. 258 259 Args: 260 nested_name (builtins.str): the key to break across the nested data structure 261 262 Returns: 263 `typing.Any`: the value retrieved from this object or a nested object 264 265 Raises: 266 builtins.ValueError: `nested_name` does not correctly identify a key in this object 267 or any of its child objects 268 """ # noqa: DAR401, DAR402 269 matching_keys = sorted( 270 [ 271 (key, self.maybe_strip(key, nested_name)) 272 for key in self.__data 273 if str(nested_name).startswith(key) 274 ], 275 key=lambda match: len(match[0]) if match else 0, 276 ) 277 278 for key, remainder in matching_keys: 279 nested_obj = self.__data[key] 280 if key == remainder: 281 return nested_obj 282 283 try: 284 return nested_obj[remainder] 285 except (KeyError, TypeError): 286 pass 287 288 raise ValueError("no match found")
Traverse nested settings to retrieve the value of nested_name
.
Arguments:
- nested_name (builtins.str): the key to break across the nested data structure
Returns:
typing.Any
: the value retrieved from this object or a nested object
Raises:
- builtins.ValueError:
nested_name
does not correctly identify a key in this object or any of its child objects
290 @property 291 def is_list(self) -> bool: 292 """Return `True` if the internal data structure is a `list`. 293 294 >>> NestedDict([1, 2, 3]).is_list 295 True 296 297 >>> NestedDict({"A": 0}).is_list 298 False 299 """ 300 return self.__is_list
Return True
if the internal data structure is a list
.
>>> NestedDict([1, 2, 3]).is_list
True
>>> NestedDict({"A": 0}).is_list
False
302 def keys(self) -> typing.KeysView[typing.Any]: 303 """Flatten the nested dictionary to collect the full list of keys. 304 305 >>> example = NestedDict({"KEY": {"SUB": {"NAME": "test", "OTHER": 1}}}) 306 >>> list(example.keys()) 307 ['KEY', 'KEY_SUB', 'KEY_SUB_NAME', 'KEY_SUB_OTHER'] 308 """ 309 return NestedKeysView(self, sep=self.sep)
Flatten the nested dictionary to collect the full list of keys.
>>> example = NestedDict({"KEY": {"SUB": {"NAME": "test", "OTHER": 1}}})
>>> list(example.keys())
['KEY', 'KEY_SUB', 'KEY_SUB_NAME', 'KEY_SUB_OTHER']
311 @classmethod 312 def maybe_merge( 313 cls, 314 incoming: Mapping[str, typing.Any] | typing.Any, 315 target: MutableMapping[str, typing.Any], 316 ) -> bool: 317 """If the given objects are both `typing.Mapping` subclasses, merge them. 318 319 Also check if the `target` object is an instance of this class. If it is, and if it's based 320 on a list, reduce the result to remove list elements that are not present in `incoming`. 321 322 >>> example = NestedDict({"key": [1, 2, 3], "other": "val"}) 323 >>> NestedDict.maybe_merge(NestedDict({"key": [4, 5]}), example) 324 True 325 >>> example.serialize() 326 {'key': [4, 5], 'other': 'val'} 327 328 Args: 329 incoming (typing.Mapping[builtins.str, typing.Any] | typing.Any): test this object to 330 verify it is a `typing.Mapping` 331 target (typing.MutableMapping[builtins.str, typing.Any]): update this 332 `typing.MutableMapping` with the `incoming` mapping 333 334 Returns: 335 builtins.bool: the two `typing.Mapping` objects were merged 336 """ 337 if not hasattr(incoming, "items") or not incoming.items(): 338 return False 339 340 for k, v in incoming.items(): 341 if k not in target: 342 target[k] = v 343 continue 344 345 if not cls.maybe_merge(v, target[k]): 346 target[k] = v 347 elif hasattr(target[k], "is_list") and target[k].is_list: 348 cls._reduce(target[k], v) 349 350 return True
If the given objects are both typing.Mapping
subclasses, merge them.
Also check if the target
object is an instance of this class. If it is, and if it's based
on a list, reduce the result to remove list elements that are not present in incoming
.
>>> example = NestedDict({"key": [1, 2, 3], "other": "val"})
>>> NestedDict.maybe_merge(NestedDict({"key": [4, 5]}), example)
True
>>> example.serialize()
{'key': [4, 5], 'other': 'val'}
Arguments:
- incoming (typing.Mapping[builtins.str, typing.Any] | typing.Any): test this object to
verify it is a
typing.Mapping
- target (typing.MutableMapping[builtins.str, typing.Any]): update this
typing.MutableMapping
with theincoming
mapping
Returns:
builtins.bool: the two
typing.Mapping
objects were merged
352 @classmethod 353 def maybe_strip(cls, prefix: str, from_: str) -> str: 354 """Remove the specified prefix from the given string (if present).""" 355 return from_[len(prefix) + 1 :] if from_.startswith(f"{prefix}{cls.sep}") else from_
Remove the specified prefix from the given string (if present).
357 def serialize(self, strip_prefix: str = "") -> dict[str, typing.Any] | list[typing.Any]: 358 """Convert the `NestedDict` back to a `dict` or `list`.""" 359 return ( 360 [ 361 item.serialize() if isinstance(item, self.__class__) else item 362 for item in self.__data.values() 363 ] 364 if self.__is_list 365 else { 366 self.maybe_strip(strip_prefix, key): ( 367 value.serialize() if isinstance(value, self.__class__) else value 368 ) 369 for key, value in self.__data.items() 370 } 371 )
Convert the NestedDict
back to a dict
or list
.
373 def squash(self) -> None: 374 """Collapse all nested keys in the given dictionary. 375 376 >>> sample = {"A": {"B": {"C": 0}, "B_D": 2}, "A_THING": True, "A_B_C": 1, "N_KEYS": 0} 377 >>> nested = NestedDict(sample) 378 >>> nested.squash() 379 >>> nested.serialize() 380 {'A': {'B': {'C': 1, 'D': 2}, 'THING': True}, 'N_KEYS': 0} 381 """ 382 for key, value in list(self.__data.items()): 383 if isinstance(value, NestedDict): 384 value.squash() 385 self.__data.pop(key) 386 try: 387 self[key] = value 388 except AttributeError: 389 self.__data[key] = value
Collapse all nested keys in the given dictionary.
>>> sample = {"A": {"B": {"C": 0}, "B_D": 2}, "A_THING": True, "A_B_C": 1, "N_KEYS": 0}
>>> nested = NestedDict(sample)
>>> nested.squash()
>>> nested.serialize()
{'A': {'B': {'C': 1, 'D': 2}, 'THING': True}, 'N_KEYS': 0}
Inherited Members
- collections.abc.MutableMapping
- pop
- popitem
- clear
- update
- setdefault
- collections.abc.Mapping
- get
- items
- values
128class Settings(types.ModuleType): 129 """Store settings from environment variables and a config file. 130 131 # Usage 132 133 >>> settings = Settings.load(config_path, prefix="APP_NAME") 134 >>> settings.APP_NAME_EXAMPLE_PARAM 135 'a string!' 136 137 ## Environment Variables 138 139 Monkeypatch an environment variable for this test: 140 141 >>> getfixture("monkey_example_param") # use an env var to override the above setting 142 {'APP_NAME_EXAMPLE_PARAM': 'monkeypatched!'} 143 144 Setting an environment variable (above) can override specific settings values: 145 146 >>> settings = Settings.load(config_path, prefix="APP_NAME") 147 >>> settings.APP_NAME_EXAMPLE_PARAM 148 'monkeypatched!' 149 150 ## JSON Values 151 152 Environment variables in JSON format are parsed: 153 154 >>> list(settings.APP_NAME_ATTR_A) 155 [1, 2, 3] 156 157 >>> getfixture("monkey_attr_a") # override an environment variable 158 {'APP_NAME_ATTR_A': '[4, 5, 6]'} 159 160 >>> settings = Settings.load(config_path, prefix="APP_NAME") # and reload the settings 161 >>> list(settings.APP_NAME_ATTR_A) 162 [4, 5, 6] 163 164 To list all settings, use the built-in `dir()` function: 165 166 >>> dir(settings) 167 ['ATTR_A', 'ATTR_A_0', 'ATTR_A_1', 'ATTR_A_2', 'ATTR_B', 'ATTR_B_K', 'EXAMPLE_PARAM'] 168 169 """ # noqa: F821 170 171 __config: NestedDict 172 """Store the config file contents as a `NestedDict` object.""" 173 174 prefix: str 175 """Only load settings whose names start with this prefix.""" 176 177 module_container: ModuleContainer | type[Null] = Null 178 """This property is set by the `Settings.bootstrap()` method and removed by 179 `Settings.restore()`""" 180 181 def __init__(self, config: dict[str, Any], environ: dict[str, str], prefix: str) -> None: 182 """Deserialize all JSON-encoded environment variables during initialization. 183 184 Args: 185 config (builtins.dict[builtins.str, typing.Any]): the values loaded from a JSON/YAML 186 file 187 environ (builtins.dict[builtins.str, typing.Any]): override config settings with these 188 environment variables 189 prefix (builtins.str): insert / strip this prefix when needed 190 191 The `prefix` is automatically added when accessing attributes: 192 193 >>> settings = Settings({"APP_NAME_EXAMPLE_PARAM": 0}, {}, prefix="APP_NAME") 194 >>> settings.APP_NAME_EXAMPLE_PARAM == settings.EXAMPLE_PARAM == 0 195 True 196 """ # noqa: RST203 197 self.__config = NestedDict(config) 198 env: dict[str, Any] = {} 199 for key, value in environ.items(): 200 try: 201 parsed = json.loads(value) 202 except json.JSONDecodeError: 203 # the value must just be a simple string 204 parsed = value 205 206 if isinstance(parsed, (dict, list)): 207 env[key] = NestedDict(parsed) 208 else: 209 env[key] = parsed 210 211 self.__config |= NestedDict(env) 212 self.prefix = prefix 213 214 def __contains__(self, obj: Any) -> bool: 215 """Check the merged `NestedDict` config for a setting with the given name. 216 217 Keys must be strings to avoid unexpected behavior. 218 219 >>> settings = Settings({20: "oops", "20": "okay"}, environ={}, prefix="") 220 >>> "20" in settings 221 True 222 >>> 20 in settings 223 False 224 """ 225 if not isinstance(obj, str): 226 return False 227 return self.maybe_add_prefix(obj) in self.__config 228 229 def __dir__(self) -> Iterable[str]: 230 """Return a set of the names of all settings provided by this object.""" 231 return {self.__config.maybe_strip(self.prefix, key) for key in self.__config.keys()}.union( 232 self.__config.maybe_strip(self.prefix, key) for key in self.__config 233 ) 234 235 def __getattr__(self, name: str) -> Any: 236 """Prioritize retrieving values from environment variables, falling back to the file config. 237 238 Args: 239 name (str): the name of the setting to retrieve 240 241 Returns: 242 `Any`: the value of the setting 243 """ 244 try: 245 return self.__getattr_override(name) 246 except (AttributeError, TypeError): 247 return self.__getattr_base(name) 248 249 def __getattr_base(self, name: str) -> Any: 250 try: 251 return super().__getattribute__(name) 252 except AttributeError: 253 pass 254 255 try: 256 return getattr(self.module_container.module, name) 257 except AttributeError: 258 pass 259 260 raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'") 261 262 def __getattr_override(self, name: str) -> Any: 263 attr_name = self.maybe_add_prefix(name) 264 265 try: 266 attr_val = self.__config[attr_name] 267 except KeyError as e: 268 raise AttributeError( 269 f"'{self.__class__.__name__}' object has no attribute '{attr_name}'" 270 ) from e 271 272 return ( 273 attr_val.serialize(strip_prefix=self.prefix) 274 if isinstance(attr_val, NestedDict) 275 else attr_val 276 ) 277 278 def bootstrap(self, module_name: str) -> types.ModuleType | None: 279 """Store the named module object, replacing it with `self` to bootstrap the import mechanic. 280 281 This object will replace the named module in `sys.modules`. 282 283 Args: 284 module_name (builtins.str): the name of the module to replace 285 286 Returns: 287 typing.Optional[types.ModuleType]: the module object that was replaced, or `None` if the 288 module wasn't already in `sys.modules` 289 """ 290 logger.info("replacing module '%s' with self", module_name) 291 try: 292 replaced_module = sys.modules[module_name] 293 except KeyError: 294 replaced_module = None 295 self.module_container = ModuleContainer(name=module_name, module=replaced_module) 296 sys.modules[module_name] = self 297 return replaced_module 298 299 @classmethod 300 def load(cls, file_path: Path | str, prefix: str | None = None) -> Settings: 301 """Load the specified configuration file and environment variables. 302 303 Args: 304 file_path (pathlib.Path | builtins.str): the path to the config file to load 305 prefix (typing.Optional[builtins.str]): if provided, parse all env variables containing 306 this prefix 307 308 Returns: 309 pyspry.base.Settings: the `Settings` object loaded from file with environment variable 310 overrides 311 """ # noqa: RST301 312 with Path(file_path).open("r", encoding="UTF-8") as f: 313 config_data = { 314 str(key): value 315 for key, value in yaml.safe_load(f).items() 316 if not prefix or str(key).startswith(f"{prefix}{NestedDict.sep}") 317 } 318 319 if prefix: 320 environ = { 321 key: value 322 for key, value in os.environ.items() 323 if key.startswith(f"{prefix}{NestedDict.sep}") 324 } 325 else: 326 environ = {} 327 328 return cls(config_data, environ, prefix or "") 329 330 def maybe_add_prefix(self, name: str) -> str: 331 """If the given name is missing the prefix configured for these settings, insert it. 332 333 Args: 334 name (builtins.str): the attribute / key name to massage 335 336 Returns: 337 builtins.str: the name with the prefix inserted `iff` the prefix was missing 338 """ 339 if not name.startswith(self.prefix): 340 return f"{self.prefix}{self.__config.sep}{name}" 341 return name 342 343 def restore(self) -> types.ModuleType | None: 344 """Remove `self` from `sys.modules` and restore the module that was bootstrapped. 345 346 When a module is bootstrapped, it is replaced by a `Settings` object: 347 348 >>> type(sys.modules["pyspry.settings"]) 349 <class 'pyspry.base.Settings'> 350 351 Calling this method reverts the bootstrapping: 352 353 >>> mod = settings.restore() 354 >>> type(sys.modules["pyspry.settings"]) 355 <class 'module'> 356 357 >>> mod is sys.modules["pyspry.settings"] 358 True 359 """ # noqa: F821 360 if self.module_container is Null: 361 return None 362 363 module_container: ModuleContainer = self.module_container # type: ignore[assignment] 364 365 module_name, module = module_container.name, module_container.module 366 self.module_container = Null 367 368 logger.info("restoring '%s' and removing self from `sys.modules`", module_name) 369 370 if not module: 371 del sys.modules[module_name] 372 else: 373 sys.modules[module_name] = module 374 375 return module
Store settings from environment variables and a config file.
Usage
>>> settings = Settings.load(config_path, prefix="APP_NAME")
>>> settings.APP_NAME_EXAMPLE_PARAM
'a string!'
Environment Variables
Monkeypatch an environment variable for this test:
>>> getfixture("monkey_example_param") # use an env var to override the above setting
{'APP_NAME_EXAMPLE_PARAM': 'monkeypatched!'}
Setting an environment variable (above) can override specific settings values:
>>> settings = Settings.load(config_path, prefix="APP_NAME")
>>> settings.APP_NAME_EXAMPLE_PARAM
'monkeypatched!'
JSON Values
Environment variables in JSON format are parsed:
>>> list(settings.APP_NAME_ATTR_A)
[1, 2, 3]
>>> getfixture("monkey_attr_a") # override an environment variable
{'APP_NAME_ATTR_A': '[4, 5, 6]'}
>>> settings = Settings.load(config_path, prefix="APP_NAME") # and reload the settings
>>> list(settings.APP_NAME_ATTR_A)
[4, 5, 6]
To list all settings, use the built-in dir()
function:
>>> dir(settings)
['ATTR_A', 'ATTR_A_0', 'ATTR_A_1', 'ATTR_A_2', 'ATTR_B', 'ATTR_B_K', 'EXAMPLE_PARAM']
181 def __init__(self, config: dict[str, Any], environ: dict[str, str], prefix: str) -> None: 182 """Deserialize all JSON-encoded environment variables during initialization. 183 184 Args: 185 config (builtins.dict[builtins.str, typing.Any]): the values loaded from a JSON/YAML 186 file 187 environ (builtins.dict[builtins.str, typing.Any]): override config settings with these 188 environment variables 189 prefix (builtins.str): insert / strip this prefix when needed 190 191 The `prefix` is automatically added when accessing attributes: 192 193 >>> settings = Settings({"APP_NAME_EXAMPLE_PARAM": 0}, {}, prefix="APP_NAME") 194 >>> settings.APP_NAME_EXAMPLE_PARAM == settings.EXAMPLE_PARAM == 0 195 True 196 """ # noqa: RST203 197 self.__config = NestedDict(config) 198 env: dict[str, Any] = {} 199 for key, value in environ.items(): 200 try: 201 parsed = json.loads(value) 202 except json.JSONDecodeError: 203 # the value must just be a simple string 204 parsed = value 205 206 if isinstance(parsed, (dict, list)): 207 env[key] = NestedDict(parsed) 208 else: 209 env[key] = parsed 210 211 self.__config |= NestedDict(env) 212 self.prefix = prefix
Deserialize all JSON-encoded environment variables during initialization.
Arguments:
- config (builtins.dict[builtins.str, typing.Any]): the values loaded from a JSON/YAML file
- environ (builtins.dict[builtins.str, typing.Any]): override config settings with these environment variables
- prefix (builtins.str): insert / strip this prefix when needed
The prefix
is automatically added when accessing attributes:
>>> settings = Settings({"APP_NAME_EXAMPLE_PARAM": 0}, {}, prefix="APP_NAME")
>>> settings.APP_NAME_EXAMPLE_PARAM == settings.EXAMPLE_PARAM == 0
True
This property is set by the Settings.bootstrap()
method and removed by
Settings.restore()
278 def bootstrap(self, module_name: str) -> types.ModuleType | None: 279 """Store the named module object, replacing it with `self` to bootstrap the import mechanic. 280 281 This object will replace the named module in `sys.modules`. 282 283 Args: 284 module_name (builtins.str): the name of the module to replace 285 286 Returns: 287 typing.Optional[types.ModuleType]: the module object that was replaced, or `None` if the 288 module wasn't already in `sys.modules` 289 """ 290 logger.info("replacing module '%s' with self", module_name) 291 try: 292 replaced_module = sys.modules[module_name] 293 except KeyError: 294 replaced_module = None 295 self.module_container = ModuleContainer(name=module_name, module=replaced_module) 296 sys.modules[module_name] = self 297 return replaced_module
Store the named module object, replacing it with self
to bootstrap the import mechanic.
This object will replace the named module in sys.modules
.
Arguments:
- module_name (builtins.str): the name of the module to replace
Returns:
typing.Optional[types.ModuleType]: the module object that was replaced, or
None
if the module wasn't already insys.modules
299 @classmethod 300 def load(cls, file_path: Path | str, prefix: str | None = None) -> Settings: 301 """Load the specified configuration file and environment variables. 302 303 Args: 304 file_path (pathlib.Path | builtins.str): the path to the config file to load 305 prefix (typing.Optional[builtins.str]): if provided, parse all env variables containing 306 this prefix 307 308 Returns: 309 pyspry.base.Settings: the `Settings` object loaded from file with environment variable 310 overrides 311 """ # noqa: RST301 312 with Path(file_path).open("r", encoding="UTF-8") as f: 313 config_data = { 314 str(key): value 315 for key, value in yaml.safe_load(f).items() 316 if not prefix or str(key).startswith(f"{prefix}{NestedDict.sep}") 317 } 318 319 if prefix: 320 environ = { 321 key: value 322 for key, value in os.environ.items() 323 if key.startswith(f"{prefix}{NestedDict.sep}") 324 } 325 else: 326 environ = {} 327 328 return cls(config_data, environ, prefix or "")
Load the specified configuration file and environment variables.
Arguments:
- file_path (pathlib.Path | builtins.str): the path to the config file to load
- prefix (typing.Optional[builtins.str]): if provided, parse all env variables containing this prefix
Returns:
pyspry.base.Settings: the
Settings
object loaded from file with environment variable overrides
330 def maybe_add_prefix(self, name: str) -> str: 331 """If the given name is missing the prefix configured for these settings, insert it. 332 333 Args: 334 name (builtins.str): the attribute / key name to massage 335 336 Returns: 337 builtins.str: the name with the prefix inserted `iff` the prefix was missing 338 """ 339 if not name.startswith(self.prefix): 340 return f"{self.prefix}{self.__config.sep}{name}" 341 return name
If the given name is missing the prefix configured for these settings, insert it.
Arguments:
- name (builtins.str): the attribute / key name to massage
Returns:
builtins.str: the name with the prefix inserted
iff
the prefix was missing
343 def restore(self) -> types.ModuleType | None: 344 """Remove `self` from `sys.modules` and restore the module that was bootstrapped. 345 346 When a module is bootstrapped, it is replaced by a `Settings` object: 347 348 >>> type(sys.modules["pyspry.settings"]) 349 <class 'pyspry.base.Settings'> 350 351 Calling this method reverts the bootstrapping: 352 353 >>> mod = settings.restore() 354 >>> type(sys.modules["pyspry.settings"]) 355 <class 'module'> 356 357 >>> mod is sys.modules["pyspry.settings"] 358 True 359 """ # noqa: F821 360 if self.module_container is Null: 361 return None 362 363 module_container: ModuleContainer = self.module_container # type: ignore[assignment] 364 365 module_name, module = module_container.name, module_container.module 366 self.module_container = Null 367 368 logger.info("restoring '%s' and removing self from `sys.modules`", module_name) 369 370 if not module: 371 del sys.modules[module_name] 372 else: 373 sys.modules[module_name] = module 374 375 return module
Remove self
from sys.modules
and restore the module that was bootstrapped.
When a module is bootstrapped, it is replaced by a Settings
object:
>>> type(sys.modules["pyspry.settings"])
<class 'pyspry.base.Settings'>
Calling this method reverts the bootstrapping:
>>> mod = settings.restore()
>>> type(sys.modules["pyspry.settings"])
<class 'module'>
>>> mod is sys.modules["pyspry.settings"]
True